Abstract

AbstractWe report a novel approach for selective determination of p‐phenylenediamine in hair dyes using β‐MnO2 nanowires modified glassy carbon (GC) electrodes through an electrochemical co‐deposition process with chitosan hydrogel. A special CE (chemical reaction and electron transfer) process on the surface of β‐MnO2 nanowires modified GC electrode is proposed and proved by cyclic voltammetry and UV‐Vis spectroscopy in the presence of p‐phenylenediamine. p‐Phenylenediamine can react with MnO2 nanowires to produce diimine and the equilibrium of the two‐electron and two‐proton redox process of p‐phenylenediamine on the electrode is changed, and consequently the reductive current is enhanced significantly. At a constant potential of 0 V vs. SCE, other main components of hair dyes including o‐, m‐phenylenediamine, catechol, resorcinol, and p‐dihydroxybenzene do not interfere in the determination of p‐phenylenediamine in the amperometric measurement because of their much lower chemical reaction activities with MnO2 nanowires. It shows a determination range of 0.2–150 μM and a low detection limit of 50 nM to response p‐phenylenediamine. This modified electrode is successfully used to analyze the amount of p‐phenylenediamine in hair dyes without preseparation procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.