Abstract

Liquid phase selective homogeneous catalytic oxidation of stearic acid (SA) was carried out to obtain industrially important carbon neutral high-added value octadecanedioic acid (ODDA). The oxidation was carried using air, cobalt(II)-acetate, manganese(II)-acetate and HBr catalyst in acetic acid (AcOH) solvent at an elevated temperature and pressure. SA oxidation products were analyzed by gas chromatography–mass spectrometry (GC–MS), gas chromatography (GC) and CO2 analyzer, and SA was oxidized selectively to ODDA without producing CO2 and intermediates like alcohols, aldehydes and ketones. The effect of SA loading (5–20%), pressure (2.8–5.8 barg) and temperature (353–383 K) on ODDA yield was studied by varying one variable at a time. Central composite design assisted response surface methodology was employed to find (i) the optimal design of experiments involving several combination of cobalt(II)-acetate (Co: 0–700 ppm), manganese(II)-acetate (Mn: 0–700 ppm) and HBr (Br–: 0–1144 ppm) and (ii) the most influencing variable and interaction among the variables. The synergistic effect of cobalt(II)-acetate in presence of HBr was observed and suggested that SA oxidation proceeds via bromine-bromide cycle. The elevated temperature and pressure along with reduced SA loading enhanced the yield of ODDA. The maximum ODDA yield was found to be 90.5% and corresponding optimum cobalt (II), manganese (II) and bromide concentration were 600.4, 452.2 and 1016.6 ppm, respectively, at fixed SA:AcOH-10:90, pressure-2.8 barg and temperature-383 K. Finally, SA oxidation kinetic analysis was determined based on the pseudo-first order homogeneous catalysis and found to be kinetically controlled with an average activation energy 34.55 kJ mol−1. The proposed kinetic model fitted well with the time-variant experimental SA and ODDA concentration under varying operating condition with percent average absolute deviation less than 5.0%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.