Abstract

Summary This paper examines a conformance control technique in which gel is placed into a heterogeneous porous medium by first injecting a high-viscosity uncrosslinked polymer solution and second, a low-viscosity crosslinker. The latter step causes an unstable displacement to occur and allows the crosslinker to flow selectively into high-permeability strata. A visual flow cell was used to test the procedure, and complete fluid diversion was achieved in a dual-zone medium with a 4:1 permeability ratio. In addition, experiments and numerical simulations were used to study fundamental changes in viscous fingering due to the crosslinker-polymer reaction. When the crosslinking reaction is fast enough so that it occurs during injection, the viscous instability becomes somewhat damped, resulting in less distinct fingers and a nearly plug-flow displacement in some cases. The differences are because gelation causes a large pressure gradient to form just behind the displacement front, whereas unreactive fingering is caused by a small pressure gradient within the fingering zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.