Abstract
The fast SCR reaction using equimolar amounts of NO and NO 2 is a powerful means to enhance the NO x conversion over a given SCR catalyst. NO 2 fractions in excess of 50% of total NO x should be avoided because the reaction with NO 2 only is slower than the standard SCR reaction. At temperatures below 200 °C, due to its negative temperature coefficient, the ammonium nitrate reaction gets increasingly important. Half of each NH 3 and NO 2 react to form dinitrogen and water in analogy to a typical SCR reaction. The other half of NH 3 and NO 2 form ammonium nitrate in close analogy to a NO x storage-reduction catalyst. Ammonium nitrate tends to deposit in solid or liquid form in the pores of the catalyst and this will lead to its temporary deactivation. The various reactions have been studied experimentally in the temperature range 150–450 °C for various NO 2/NO x ratios. The fate of the deposited ammonium nitrate during a later reheating of the catalyst has also been investigated. In the absence of NO, the thermal decomposition yields mainly ammonia and nitric acid. If NO is present, its reaction with nitric acid on the catalyst will cause the formation of NO 2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.