Abstract
The intrinsic bulk behavior of topological insulators (TI) is a key issue for their employment in future device applications. State of the art TIs predominantly suffer from large bulk charge carrier concentrations that mask their extraordinary surface states. In this paper we present the selective area growth of Bi2Te3 and Sb2Te3 TI thin films on prestructured Si(111) Si on insulator (SOI) substrates, paving the way to high quality TI nanostructures in which access to surface states is enhanced. Therefore high quality Bi2Te3 and Sb2Te3 thin films were deposited by means of solid source molecular beam epitaxy (MBE) and subsequently investigated by energy dispersive x-ray spectroscopy (EDX). To investigate the transport properties of the selectively grown thin films, magnetotransport measurements were performed at low temperatures. Nucleation in the SiO2 valleys next to the prepatterned Si(111) mesa structures was not observed. The structural and morphological qualities of crystals deposited on untreated Si(111) SOI wafers are completely preserved by employing the selective area growth on prepatterned substrates. The transport characteristics of the selectively-grown TI systems are comparable to those of the analogous postpatterned films.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.