Abstract

Lanmodulin (LanM) is a recently discovered protein that undergoes a large conformational change in response to rare-earth elements (REEs). Here, we use multiple physicochemical methods to demonstrate that LanM is the most selective macromolecule for REEs characterized to date and even outperforms many synthetic chelators. Moreover, LanM exhibits metal-binding properties and structural stability unseen in most other metalloproteins. LanM retains REE binding down to pH ≈ 2.5, and LanM-REE complexes withstand high temperature (up to 95 °C), repeated acid treatments, and up to molar amounts of competing non-REE metal ions (including Mg, Ca, Zn, and Cu), allowing the protein's use in harsh chemical processes. LanM's unrivaled properties were applied to metal extraction from two distinct REE-containing industrial feedstocks covering a broad range of REE and non-REE concentrations, namely, precombustion coal and electronic waste leachates. After only a single all-aqueous step, quantitative and selective recovery of the REEs from all non-REEs initially present (Li, Na, Mg, Ca, Sr, Al, Si, Mn, Fe, Co, Ni, Cu, Zn, and U) was achieved, demonstrating the universal selectivity of LanM for REEs against non-REEs and its potential application even for industrial low-grade sources, which are currently underutilized. Our work indicates that biosourced macromolecules such as LanM may offer a new paradigm for extractive metallurgy and other applications involving f-elements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.