Abstract

ABSTRACTIn a highly dispersed flotation pulp, ultrafine hydrophilic minerals can entrain into froth products even though they may be perfectly hydrophilic. Therefore, effective depression of the hydrophilic minerals in froth flotation relies not only on rendering the minerals hydrophilic, but also on proper particle size control. In this paper, it will be shown that several depressants in mineral flotation systems indeed not only make the minerals hydrophilic but also cause selective coagulation or flocculation of the hydrophilic minerals. As a result, both the genuine flotation and the hydraulic entrainment of the hydrophilic minerals are reduced. The aforementioned depressants and mineral flotation systems include: zinc sulfate in the depression of sphalerite while copper sulfide and lead sulfide are floated; starch in the depression of iron oxides and phosphates while quartz is floated; polyethylene oxide in the depression of quartz while sulfide minerals such as chalcopyrite is floated.Therefore, in fine and ultrafine particle flotation, the flotation depressants should be able to not only make the to-be-depressed minerals hydrophilic, but also make them selectively aggregate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.