Abstract

Evolutionary life history theory seeks to explain how reproductive and survival traits are shaped by selection through allocations of an individual’s resources to competing life functions. Although life-history traits evolve rapidly, little is known about the genetic and cellular mechanisms that control and couple these tradeoffs. Here, we find that two laboratory-adapted strains of C. elegans descended from a single common ancestor that lived in the 1950s have differences in a number of life-history traits, including reproductive timing, lifespan, dauer formation, growth rate, and offspring number. We identified a quantitative trait locus (QTL) of large effect that controls 24%–75% of the total trait variance in reproductive timing at various timepoints. Using CRISPR/Cas9-induced genome editing, we show this QTL is due in part to a 60 bp deletion in the 3’ end of the nurf-1 gene, which is orthologous to the human gene encoding the BPTF component of the NURF chromatin remodeling complex. Besides reproduction, nurf-1 also regulates growth rate, lifespan, and dauer formation. The fitness consequences of this deletion are environment specific—it increases fitness in the growth conditions where it was fixed but decreases fitness in alternative laboratory growth conditions. We propose that chromatin remodeling, acting through nurf-1, is a pleiotropic regulator of life history trade-offs underlying the evolution of multiple traits across different species.

Highlights

  • Organisms are faced with limited resources to invest in their growth, survival, and offspring

  • A key observation of evolutionary life history theory is the recognition that there are PLOS Genetics | DOI:10.1371/journal.pgen

  • To quantify the difference in egg-laying rates between CX12311 and LSJ2, we measured egg-laying rates from hermaphrodites grown on agar plates seeded with E. coli bacteria starting from the fourth larval stage (L4) and twice a day for five days (Fig 1C)

Read more

Summary

Introduction

Organisms are faced with limited resources to invest in their growth, survival, and offspring. Because they cannot dedicate unlimited energy to all traits, they must prioritize energy distribution depending on their environment and sexual partners [1]. Life-history theory seeks to understand how an organism’s life-history traits–including reproductive timing and behavior, lifespan, growth rate, and post-reproductive behavior–have been shaped by sexual and natural selection using key concepts such as trait value, trait costs, environmental predictability, and environmental stability [2, 3]. Trade-offs are not absolute, but depend on an animal’s given environment [4], indicating these traits should change as animals speciate and explore new niches. Empirical evidence confirms that life-history traits evolve very rapidly

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.