Abstract

Membranes made from 4 commercial poly(carbonate urethanes): Carbothane (CB), Chronoflex (CF), Corethane 80A (CT80), and Corethane 55D (CT55), and from 2 poly(ether urethanes): Tecoflex (TF) and Tecothane (TT) were prepared by solution casting and sterilized by either ethylene oxide (EO) or gamma radiation. Their biocompatibility was evaluated in vitro in terms of proliferation, cell viability, and adhesion characteristics of human umbilical veins (HUVEC), monocytes (THP-1), and skin fibroblasts, and by measuring complement activation through the generation of the C3a complex. Their hemocompatibility was determined by measuring the level of radiolabeled platelet, neutrophil, and fibrin adhesion in an ex vivo arteriovenous circuit study in piglets as well as via an in vitro hemolysis test. The results of this study showed no endothelial cell proliferation on any of the materials. The cell viability study revealed that the CB, CF, and TF membranes sterilized by EO maintained the highest percentage of monocyte viability after 72 h of incubation (>70%) while none of the gamma-sterilized membranes displayed any cell viability. The fibroblast adhesion and C3a generation assays revealed that none of the materials supported any cell adhesion or activated complement, regardless of the sterilization method. The hemolysis test also confirmed that the 4 poly(carbonate urethanes) were hemolytic while none of the poly(ether urethanes) were. Finally, the ex vivo study revealed that significantly more platelets adhered to the CB and CT55 membranes while the levels of neutrophil and fibrin deposition were observed to be similar for all 6 materials. In conclusion, the study identified the CF and TF membranes as having superior biocompatibility and hemocompatibility compared to the other polyurethanes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.