Abstract

Quantitative real-time PCR (RT-qPCR) techniques have revolutionized gene expression analyses. To obtain accurate results, raw RT-qPCR results need to be normalized by using endogenous reference genes whose expression is assumed invariable in all studied samples. However, there are no universal reference genes, and candidate genes need to be evaluated for each experimental condition. In this work, we tested a set of possible reference genes for use in different organs and tissues of Pinus pinaster (needles from adult trees and different organs and developmental stages of seedlings). The putative reference genes were selected using microarray analyses and from those commonly used in previous works. To achieve reproducible and reliable results, Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines were followed. To highlight the importance of these rules, 10 alternative primer pairs to be evaluated in pine samples were designed by following or not following the MIQE guidelines. Twenty-four candidate reference genes were tested in pine needles and 14 were also tested in pine seedlings. In both cases, valid reference genes were found, but differences in the stability and expression levels were also observed. Furthermore, a few of the best genes had unknown functions. The five most stable genes in the pine seedlings as well as four new candidate reference genes were evaluated in isolated tissues using laser capture microdissection. The results showed that the appropriate reference genes in different maritime pine organs were not invariable when sourced from the different tissues forming the organs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.