Abstract

Recent biological invasions offer 'natural' laboratories to understand the genetics and ecology of adaptation, hybridization, and range limits. One of the most impressive and well-documented biological invasions of the 20th century began in 1957 when Apis mellifera scutellata honey bees swarmed out of managed experimental colonies in Brazil. This newly-imported subspecies, native to southern and eastern Africa, both hybridized with and out-competed previously-introduced European honey bee subspecies. Populations of scutellata-European hybrid honey bees rapidly expanded and spread across much of the Americas in less than 50 years. We use broad geographic sampling and whole genome sequencing of over 300 bees to map the distribution of scutellata ancestry where the northern and southern invasions have presently stalled, forming replicated hybrid zones with European bee populations in California and Argentina. California is much farther from Brazil, yet these hybrid zones occur at very similar latitudes, consistent with the invasion having reached a climate barrier. At these range limits, we observe genome-wide clines for scutellata ancestry, and parallel clines for wing length that span hundreds of kilometers, supporting a smooth transition from climates favoring scutellata-European hybrid bees to climates where they cannot survive winter. We find no large effect loci maintaining exceptionally steep ancestry transitions. Instead, we find most individual loci have concordant ancestry clines across South America, with a build-up of somewhat steeper clines in regions of the genome with low recombination rates, consistent with many loci of small effect contributing to climate-associated fitness trade-offs. Additionally, we find no substantial reductions in genetic diversity associated with rapid expansions nor complete dropout of scutellata ancestry at any individual loci on either continent, which suggests that the competitive fitness advantage of scutellata ancestry at lower latitudes has a polygenic basis and that scutellata-European hybrid bees maintained large population sizes during their invasion. To test for parallel selection across continents, we develop a null model that accounts for drift in ancestry frequencies during the rapid expansion. We identify several peaks within a larger genomic region where selection has pushed scutellata ancestry to high frequency hundreds of kilometers past the present cline centers in both North and South America and that may underlie high-fitness traits driving the invasion.

Highlights

  • Diverging lineages often spread back into secondary contact before reproductive isolation is complete, and so can hybridize

  • As a recent genetic mixture of multiple imported Apis mellifera subspecies, scutellata-European hybrid honey bees have a patchwork of ancestry across their genomes, which we leverage to identify loci with an excess of scutellata or European ancestry due to selection

  • We use the natural replication in this invasion to compare outcomes between North and South America (California and Argentina)

Read more

Summary

Introduction

Diverging lineages often spread back into secondary contact before reproductive isolation is complete, and so can hybridize. We use this powerful comparative framework to better understand the genomic basis of fitness and range limits of scutellata-European hybrid honey bees, with replicate routes of invasion into North and South America. The range of the western honey bee (Apis mellifera) has expanded from Africa, Europe, and western Asia [8] across much of the globe, assisted by colonialism and the ecological diversity of honey bee subspecies [9]. In 1957, swarms from a newly-imported honey bee subspecies from southern and eastern Africa, Apis mellifera scutellata, escaped from an experimental breeding program in Brazil and rapidly dispersed. Scutellata honey bees both outcompeted and hybridized with European-ancestry populations, creating a rapidly advancing scutellata-European admixed population that expanded north and south across the Americas at 300-500 km/year [12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.