Abstract

Seaweeds are believed to have developed unique mechanisms to maintain optimal cellular potassium and sodium concentrations in order to survive in the saline marine environment. To gain a molecular understanding of underlying potassium/sodium homeostasis in seaweeds, full-length cDNA libraries from the multiple stages in the life cycle, including gametophytes, conchosporangia and sporophytes of a marine red alga, Pyropia yezoensis, were constructed. A large portion of genes from each library through the life cycle was revealed to be functionally unknown reconfirming the uniqueness of P. yezoensis genes in terms of evolutionary lineage. Genes that could potentially contribute to potassium deficiency tolerance were selected from the potassium uptake defective Escherichia coli strain expressing gametophytes and conchosporangia libraries under the low potassium conditions. Of those, an ammonium transporter gene, PyAMT1, was demonstrated to enhance potassium deficiency tolerance effectively when expressed in the E. coli strain. Potential roles of PyAMT1 and other candidate components in this context are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.