Abstract

BackgroundBefore ovulation, sperm-oviduct interaction mechanisms may act as checkpoint for the selection of fertilizing spermatozoa in mammals. Postovulatory mating does not allow the sperm to attach to the oviduct, and spermatozoa may only undergo some selection processes during the transport through the female reproductive tract and/or during the zona pellucida (ZP) binding/penetration.MethodsWe have induced DNA damage in spermatozoa by two treatments, (a) a scrotal heat treatment (42 degrees C, 30 min) and (b) irradiation with 137Cs gamma-rays (4 Gy, 1.25 Gy/min). The effects of the treatments were analyzed 21-25 days post heat stress or gamma-radiation. Postovulatory females mated either with treated or control males were sacrificed at Day 14 of pregnancy, and numbers of fetuses and resorptions were recorded.ResultsBoth treatments decreased significantly implantation rates however, the proportion of fetuses/resorptions was only reduced in those females mated to males exposed to radiation, indicating a selection favoring fertilization of sperm with unfragmented DNA on the heat treatment group. To determine if DNA integrity is one of the keys of spermatozoa selection after postovulatory mating, we analyzed sperm DNA fragmentation by COMET assay in: a) sperm recovered from mouse epididymides; b) sperm recovered from three different regions of female uterine horns after mating; and c) sperm attached to the ZP after in vitro fertilization (IVF). Similar results were found for control and both treatments, COMET values decreased significantly during the transit from the uterine section close to the uterotubal junction to the oviduct, and in the spermatozoa attached to ZP. However, fertilization by IVF and intracytoplasmatic sperm injection (ICSI) showed that during sperm ZP-penetration, a stringent selection against fragmented-DNA sperm is carried out when the damage was induced by heat stress, but not when DNA fragmentation was induced by radiation.ConclusionOur results indicate that in postovulatory mating there is a preliminary general selection mechanism against spermatozoa with low motility and fragmented-DNA during the transport through the female reproductive tract and in the ZP binding, but the ability of the ZP to prevent fertilization by fragmented-DNA spermatozoa is achieved during sperm-ZP penetration, and depends on the source of damage.

Highlights

  • Before ovulation, sperm-oviduct interaction mechanisms may act as checkpoint for the selection of fertilizing spermatozoa in mammals

  • Our results indicate that in postovulatory mating there is a preliminary general selection mechanism of spermatozoa with undamaged DNA during the transport through the female reproductive tract and in the zona pellucida (ZP) binding, but the ability of the ZP to recognize fragmented-DNA spermatozoa is achieved during sperm-ZP penetration, and it depends on the source and type of damage, because only DNA-damaged sperm cells by heat stress but not by radiation were selected

  • Our results indicated that when mating takes place after ovulation, female reproductive tract and ZP binding/ penetration process play an important role in selection of sperm with normal motility and morphology, and with normal chromatin DNA and/or normal DNA structure/function

Read more

Summary

Introduction

Sperm-oviduct interaction mechanisms may act as checkpoint for the selection of fertilizing spermatozoa in mammals. Postovulatory mating does not allow the sperm to attach to the oviduct, and spermatozoa may only undergo some selection processes during the transport through the female reproductive tract and/or during the zona pellucida (ZP) binding/penetration. Regardless of the large number of spermatozoa in an ejaculate, only a minority are able to meet the stringent requirements needed to fertilize the oocyte This reduction should be due to the presence of mechanisms within the female reproductive tract that act as checkpoints for the selection of fertilizing spermatozoa. Mating after ovulation impedes sperm attachment to the oviduct, reducing the female sperm selection mechanisms In this case, only the sperm-zona pellucida (ZP) interaction may produce selection of the spermatozoa. Since the female reproductive tract does not assess the sperm DNA quality directly, the selection has to be based on sperm phenotype and function [14,15]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.