Abstract
The biofortification of lentil (Lens culinaris Medikus.) has the potential to provide adequate daily selenium (Se) to human diets. The objectives of this study were to (1) determine how low-dose Se fertilizer application at germination affects seedling biomass, antioxidant activity, and Se uptake of 26 cultivated lentil genotypes; and (2) quantify the seed Se concentration of 191 lentil wild accessions grown in Terbol, Lebanon. A germination study was conducted with two Se treatments [0 (control) and 30 kg of Se/ha] with three replicates. A separate field study was conducted in Lebanon for wild accessions without Se fertilizer. Among cultivated lentil accessions, PI533690 and PI533693 showed >100% biomass increase vs. controls. Se addition significantly increased seedling Se uptake, with the greatest uptake (6.2 µg g−1) by PI320937 and the least uptake (1.1 µg g−1) by W627780. Seed Se concentrations of wild accessions ranged from 0 to 2.5 µg g−1; accessions originating from Syria (0–2.5 µg g−1) and Turkey (0–2.4 µg g−1) had the highest seed Se. Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 µg g−1, and thus a single 50 g serving of lentil has the potential to provide adequate dietary Se (20–60% of daily recommended daily allowance). As such, Se application during plant growth for certain lentil genotypes grown in low Se soils may be a sustainable Se biofortification solution to increase seed Se concentration. Incorporating a diverse panel of lentil wild germplasm into Se biofortification programs will increase genetic diversity for effective genetic mapping for increased lentil seed Se nutrition and plant productivity.
Highlights
Selenium deficiency is a global public health concern
Frequency distribution analysis revealed that seed Se for 63% of accessions was between 0.25 and 0.75 μg g−1, and a single 50 g serving of lentil has the potential to provide adequate dietary Se (20–60% of daily recommended daily allowance)
Combined statistical analysis of variance showed that lentil genotype and Se treatment significantly (p < 0.05) affected seedling biomass, antioxidant activity, and seedling Se concentration (Table 3)
Summary
Selenium deficiency is a global public health concern. Recent estimates indicate 15 to 20% of children and adults around the world are Se deficient [1,2]. This means an estimated 30–100 million people are Se deficient, mainly due to low concentrations of bioavailable Se in commonly eaten foods. Biofortification, i.e., enriching staple foods with Se through conventional plant breeding, is considered a sustainable way to increase Se intake and support good general health [3]. Pulses are becoming popular as they are a nutritionally superior, medium-energy food that is low in fat, high in protein, and a good source of micronutrients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.