Abstract

Soman produces excitotoxic effects by inhibiting acetylcholinesterase in the cholinergic synapses and neuromuscular junctions, resulting in soman-induced sustained status epilepticus (SSE). Our previous work showed delayed intramuscular (i.m.) treatment with A1 adenosine receptor agonist N-bicyclo-[2.2.1]-hept-2-yl-5′-chloro-5′-deoxyadenosine (ENBA) alone suppressed soman-induced SSE and prevented neuropathology. Using this same rat soman seizure model, we tested if delayed therapy with ENBA (60 mg/kg, i.m.) would terminate seizure, protect neuropathology, and aid in survival when given in conjunction with current standard medical countermeasures (MCMs): atropine sulfate, 2-PAM, and midazolam (MDZ). Either 15- or 30-min following soman-induced SSE onset, male rats received atropine and 2-PAM plus either MDZ or MDZ + ENBA. Electroencephalographic (EEG) activity, physiologic parameters, and motor function were recorded. Either 2- or 14-days following exposure surviving rats were euthanized and perfused for histology. All animals treated with MDZ + ENBA at both time points had 100% EEG seizure termination and reduced total neuropathology compared to animals treated with MDZ (2-day, p = 0.015 for 15-min, p = 0.002 for 30-min; 14-day, p < 0.001 for 15-min, p = 0.006 for 30-min), showing ENBA enhanced MDZ's anticonvulsant and neuroprotectant efficacy. However, combined MDZ + ENBA treatment, when compared to MDZ treatment groups, had a reduction in the 14-day survival rate regardless of treatment time, indicating possible enhancement of MDZ's neuronal inhibitory effects by ENBA. Based on our findings, ENBA shows promise as an anticonvulsant and neuroprotectant in a combined treatment regimen following soman exposure; when given as an adjunct to standard MCMs, the dose of ENBA needs to be adjusted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.