Abstract
The present work proposes two novel approaches namely One Dimensional adaptive average Local Binary Pattern (1-D AaLBP) and One-Dimensional adaptive difference Local Binary Pattern (1-D AdLBP) for feature extraction from EEG signals and Convolutional Neural Network (CNN) for classification of EEG signals. Both the proposed feature extraction methods are computationally easy to implement. In the first step the histograms are formed from the extracted patterns, after that feature vectors of the histogram are given as input to the classifier. Two benchmark EEG datasets such as Bonn and CHB-MIT are employed for conducting experiments for comparing the performances of the proposed method with other existing research works. The performance measures such as sensitivity, specificity, classification accuracy and execution time are used for evaluating the proposed methods. It is learned from the experiments conducted that among various methods the proposed method provides improved performance in terms of sensitivity, specificity, classification accuracy and execution time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.