Abstract

Two three-story full-scale sub-standard reinforced concrete buildings were tested under self-weight and reversed cyclic lateral displacements to examine their behavior during earthquakes. While one of these buildings was a part of an actual existing building (TB1) built in the beginning of 1990’s in Istanbul, the other was constructed by the authors as a representative building (TB2) that reflects the most common structural deficiencies of existing building stock in Turkey. Both buildings were constructed with plain bars, low strength concrete and inadequate lateral reinforcement. The differences between these buildings were axial load levels of first story columns, expected location of major structural damages (weak beam–strong column for TB1 and strong beam–weak column for TB2) and connection details of longitudinal bars in columns at the foundation–column interface (continuous for TB1 and lap-spliced with 180° hooks for TB2). Both buildings were pushed and pulled at increasing displacement amplitudes up to near collapse well beyond the life safety performance level. While TB1 was damaged significantly at 1.5 % inter-story drift ratio, TB2 reached near collapse damage at 4.0 % inter-story drift ratio. In this paper, details and test results of these two sub-standard buildings are presented. In addition, the available nonlinear modeling techniques and performance predictions of the Turkish Seismic Design Code (Specification for the buildings to be constructed in disaster areas. Ministry of Public Works and Settlement, Ankara, 2007), ASCE 41-13 (Seismic rehabilitation of existing buildings, ASCE/SEI 41-13. ASCE, Reston, 2014) and Eurocode 8-3 (Eurocode 8: Design of structures for earthquake resistance. Part 3: Assessment and retrofitting of buildings. Comite Europeen de Normalisation, Bruxelles, 2005) are compared with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.