Abstract

Compared with traditional precast concrete composite shear walls (PCCSWs) with two boundary elements adjacent to edges, the PCCSWs with multiple boundary elements investigated in this paper have extra boundary elements at the intersections with other shear walls. In this paper, low reversed cyclic loading tests were conducted on three full-scale shear wall specimens with multiple boundary elements under in-plane loading and two full-scale shear wall specimens under out-of-plane loading. The in-plane loaded specimens included a PCCSW with double precast layers (i.e. precast concrete double skin shear wall, PCDSSW), a PCCSW with single precast layer, and a cast-in-pace (CIP) control specimen, whereas the out-of-plane loaded specimens included a PCDSSW and a CIP control specimen. Test results revealed that all specimens failed in bending. The hysteresis loops of the precast composite specimens were stable but slightly pinching, which were similar to those of the corresponding CIP control specimen. Compared with the CIP specimens, the PCDSSWs showed similar energy dissipation. The loading capacity of the precast composite specimens was generally a little lower than that of the corresponding CIP specimen with difference not more than 15%. In the in-plane loading tests, the PCDSSW reached higher displacement ductility (2.45) than the CIP specimen (1.88), whereas the ductility of the PCCSW with single precast layer was relatively low. Regarding the specimens under out-of-plane loading, the ductility of the PCDSSW (3.83) was close to that of the CIP specimen (3.02). Moreover, the stiffness degradation of the precast composite specimens was found to be comparable to that of the control specimens. Based on the test results, a restoring force model was developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.