Abstract

Quantitative analysis of depth-converted reflection times defines long-term differential motion across individual structures in a central Appalachian interior basin known as the Rome trough. Differential motion decreases exponentially with time. Rotation about a hinge defining the trough's west margin reached approximately 37% of total displacement in about 63-78 million years (m.y.). Displacement across the trough's faulted east margin occurred more rapidly and reached 37% of the total in 13-51 m.y. A major fault in the interior of the trough developed rapidly with 37% of total displacement reached in from 16 to 23 m.y. Longer term rotation across the west margin may be due to its participation in the overall subsidence of the craton during the Paleozoic. The time spanned by the formation of the East-Margin and Interior faults was restricted to the Cambrian in the northern part of the area, but to the south, movement along the East-Margin fault continued through the Middle Ordovician.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.