Abstract

We carried out excitation experiments on clamped-free thin cylindrical shells immersed in fluid that represented thermal baffles of a fast breeder reactor. At a certain excitation level, occurred external pressure buckling. We also observed that parametric vibration, which involved high-order circumferential vibration modes, occurred at a certain combination of excitation frequency and excitation level. Concerning seismic design of the thermal baffles, we, therefore, take not only the buckling but also the effect of the parametric vibration into consideration. We adopt buckling eigenvalue analyses to estimate buckling pressure and propose a formula to prevent the buckling. Further, we discuss important factors such as buckling strength reduction caused by initial shape imperfections and interaction between horizontal and vertical seismic response. Concerning the parametric vibration, a significant deformation of cylinders should be prevented. A practical method applying the dynamic stability theory is proposed to obtain the condition, under which the parametric vibration takes place.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.