Abstract

In order to evaluate the seismic behavior of confined RC column-composite beam joints, five interior joints were tested under low cyclic reversed load. The weakening extent of flanges, the number of studs, and whether to reinforce weakened flanges were used as parameters in designing these five joints. Failure characteristics, hysteretic curves, skeleton curves, ductility, energy dissipation, strength degradation, and stiffness degradation were analyzed. The test results revealed that the steel beam flanges in the joints were equivalent to the tie rod. Weakened flanges resulted in poor seismic behavior; however, the seismic behavior could be improved by increasing studs and reinforcing weakened flanges. The joint steel plate hoops, equivalent to stirrups, did not yield when the maximum load was reached, but yielded when the failure load was reached for the joints with shear failure. Increasing stud-type joints and reinforcing flange-type joints ensured good seismic behavior and met project requirements. Based on the experimental results, the failure mechanism of the joints was discussed, and the shear capacity equations of the joints was presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.