Abstract
A recent segregation criterion [Phys. Rev. E 78, 020301(R) (2008)] based on the thermal diffusion factor Λ of an intruder in a heated granular gas described by the inelastic Enskog equation is revisited. The sign of Λ provides a criterion for the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE). The present theory incorporates two extra ingredients not accounted for by the previous theoretical attempt. First, the theory is based upon the second Sonine approximation to the transport coefficients of the mass flux of the intruder. Second, the dependence of the temperature ratio (intruder temperature over that of the host granular gas) on the solid volume fraction is taken into account in the first and second Sonine approximations. In order to check the accuracy of the Sonine approximation considered, the Enskog equation is also numerically solved by means of the direct simulation Monte Carlo method to get the kinetic diffusion coefficient D(0). The comparison between theory and simulation shows that the second Sonine approximation to D(0) yields an improvement over the first Sonine approximation when the intruder is lighter than the gas particles in the range of large inelasticity. With respect to the form of the phase diagrams for the BNE-RBNE transition, the kinetic theory results for the factor Λ indicate that while the form of these diagrams depends sensitively on the order of the Sonine approximation considered when gravity is absent, no significant differences between both Sonine solutions appear in the opposite limit (gravity dominates the thermal gradient). In the former case (no gravity), the first Sonine approximation overestimates both the RBNE region and the influence of dissipation on thermal diffusion segregation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.