Abstract

The reason for the heat-to-heat variation of the creep strength of Grade T92 steels was investigated, focusing on segregation of alloying elements. This variation was clearly confirmed at 650 °C and 700 °C. Layered contrasts were observed along the longitudinal direction of the boiler tube, which were considered to be due to solidifying segregation in the manufacturing process. The prior austenite grain size, packet size and block size seemed to be finer in the segregation band than in other areas. The segregation of alloying elements such as Cr, Mo and W was observed along the longitudinal direction of the tube. The difference between the maximum and minimum Cr content, Δ Cr, at a distance (x) was correlated with the difference of degree of Cr segregation among the steels. A correlation between ΔCr and time to rupture at 650 °C was found. The decrease in number density of M23C6 and MX particles, length of high-angle boundaries, and average KAM value during creep exposure was fast in strongly segregated material. This indicates that precipitation and martensitic structure strengthening rapidly decrease during creep exposure in steels with strong segregation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.