Abstract
Biofilm reactors are often mass transfer limited due to excessive biofilm growth, impeding reactor performance. Fluidic conditions play a key role for biofilm structural development and subsequently for overall reactor performance. Continuous interfacial forces generated by aqueous-air segmented flow are controlling biofilm structure and diminish mass transfer limitations in biofilm microreactors. A simple three step method allows the formation of robust biofilms under aqueous-air segmented flow conditions: a first-generation biofilm is developing during single phase flow, followed by the introduction of air segments discarding most of the established biofilm. Finally, a second-generation, mature biofilm is formed in the presence of aqueous-air segments. Confocal laser scanning microscopy experiments revealed that the segmented flow supports the development of a robust biofilm. This mature biofilm is characterized by a three to fourfold increase in growth rate, calculated from an increase in thickness, a faster spatial distribution (95% surface coverage in 24 h), and a significantly more compact structure (roughness coefficient <1), as compared to biofilms grown under single phase flow conditions. The applicability of the concept in a segmented flow biofilm microreactor was demonstrated using the epoxidation of styrene to (S)-styrene oxide (ee > 99.8%) catalyzed by Pseudomonas sp. strain VLB120ΔC cells in the mono-species biofilm. The limiting factor affecting reactor performance was oxygen transfer as the volumetric productivity rose from 11 to 46 g L tube (-1) day(-1) after increasing the air flow rate. In summary, different interfacial forces can be applied for separating cell attachment and adaptation resulting in the development of a robust catalytic biofilm in continuous microreactors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.