Abstract

Segmented correlation is a useful technique for testing a superconducting analogue-to-digital converter, as it allows the output spectrum to be estimated with fine frequency resolution even when data record lengths are limited by small on-chip acquisition memories. Previously, we presented segmented correlation measurements on a superconducting bandpass delta–sigma modulator sampling at 40.2 GHz under idle channel (no input) conditions. This paper compares the modulator output spectra measured by segmented correlation with and without an input tone. Important practical considerations of calculating segmented correlations are discussed in detail. Resolution enhancement by segmented correlation does reduce the spectral width of the input tone in the desired manner, but the signal power due to the input increases the variance of the spectral estimate near the input frequency, hindering accurate calculation of the in-band noise. This increased variance, which is predicted by theory, must be considered carefully in the application of segmented correlation. Methods for obtaining more accurate estimates of the quantization noise spectrum which are closer to those measured with no input are described.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.