Abstract

Accurate automated segmentation of the right ventricle is difficult due in part to the large shape variation found between patients. We explore the ability of manifold learning based shape models to represent the complexity of shape variation found within an RV dataset as compared to a typical PCA based model. This is empirically evaluated with the manifold model displaying a greater ability to represent complex shapes. Furthermore, we present a combined manifold shape model and Markov Random Field Segmentation framework. The novelty of this method is the iterative generation of targeted shape priors from the manifold using image information and a current estimate of the segmentation; a process that can be seen as a traversal across the manifold. We apply our method to the independently evaluated MICCAI 2012 RV Segmentation Challenge data set. Our method performs similarly or better than the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.