Abstract
This paper presents a novel variational segmentation framework combining shape priors and parametric intensity distribution modeling for extracting the fetal envelope on 3D obstetric ultrasound images. To overcome issues related to poor image quality and missing boundaries, we inject three types of information in the segmentation process: tissue-specific parametric modeling of pixel intensities, a shape prior for the fetal envelope and a shape model of the fetus' back. The shape prior is encoded with Legendre moments and used to constraint the evolution of a level-set function. The back model is used to post-process the segmented fetal envelope. Results are presented on 3D ultrasound data and compared to a set of manual segmentations. The robustness of the algorithm is studied, and both visual and quantitative comparisons show satisfactory results obtained by the proposed method on the tested dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.