Abstract
BackgroundThis study aimed to evaluate the effectiveness of DeepLabv3+with Squeeze-and-Excitation (DeepLabv3+SE) architectures for segmenting the choroid in optical coherence tomography (OCT) images of patients with diabetic retinopathy.MethodsA total of 300 B-scans were selected from 21 patients with mild to moderate diabetic retinopathy. Six DeepLabv3+SE variants, each utilizing a different pre-trained convolutional neural network (CNN) for feature extraction, were compared. Segmentation performance was assessed using the Jaccard index, Dice score (DSC), precision, recall, and F1-score. Binarization and Bland-Altman analysis were employed to evaluate the agreement between automated and manual measurements of choroidal area, luminal area (LA), and Choroidal Vascularity Index (CVI).ResultsDeepLabv3+SE with EfficientNetB0 achieved the highest segmentation performance, with a Jaccard index of 95.47, DSC of 98.29, precision of 98.80, recall of 97.41, and F1-score of 98.10 on the validation set. Bland-Altman analysis indicated good agreement between automated and manual measurements of LA and CVI.ConclusionsDeepLabv3+SE with EfficientNetB0 demonstrates promise for accurate choroid segmentation in OCT images. This approach offers a potential solution for automated CVI calculation in diabetic retinopathy patients. Further evaluation of the proposed method on a larger and more diverse dataset can strengthen its generalizability and clinical applicability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.