Abstract

To compensate for bias field inhomogeneity and reduce noise, we incorporate domain-based knowledge and spatial information into a brain segmentation algorithm by proposing a new multi-layer Hidden Markov model. Brain tissues include Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF). A typical slice of a brain image either contains GM, GM–WM or GM–WM–CSF. Therefore, we classify the slices into three classes by employing a 1-D Hidden Markov model in the first layer of our method. Corresponding to a class in the first layer, we use another 1-D Hidden Markov model for segmentation of the slices in the second layer. A 2-D slice is converted into a vector by concatenation of the individual rows. Then, it is segmented by a second layer model. We extensively evaluated our method using three public datasets including 5492 images. Our method proves the significant potential of the proposed multi-layer Hidden Markov model for segmentation of 3-D medical image in the presence of noise and field inhomogeneity. Regarding the IBSR_18 datasets, the proposed method improved the results of segmentation of White Matter and Gray Matter by 0.026 and 0.04, respectively, using Dice coefficient index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.