Abstract

Pairwise Whole Genome Alignment (WGA) is a crucial first step to understanding evolution at the DNA sequence-level. Pairwise WGA of thousands of currently available species genomes could help make biological discoveries, however, computing them for even a fraction of the millions of possible pairs is prohibitive – WGA of a single pair of vertebrate genomes (human-mouse) takes 11 hours on a 96-core Amazon Web Services (AWS) instance (c5.24xlarge). This paper presents SegAlign – a scalable, GPU-accelerated system for computing pairwise WGA. SegAlign is based on the standard seed-filter-extend heuristic, in which the filtering stage dominates the runtime (e.g. 98% for human-mouse WGA), and is accelerated using GPU(s). Using three vertebrate genome pairs, we show that SegAlign provides a speedup of up to $14 \times $ on an 8-GPU, 64-core AWS instance (p3.16xlarge) for WGA and nearly $2.3 \times $ reduction in dollar cost. SegAlign also allows parallelization over multiple GPU nodes and scales efficiently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.