Abstract

AbstractPotential effectiveness of harvest weed seed control (HWSC) systems depends upon seed shatter of the target weed species at crop maturity, enabling its collection and processing at crop harvest. However, seed retention likely is influenced by agroecological and environmental factors. In 2016 and 2017, we assessed seed-shatter phenology in 13 economically important broadleaf weed species in soybean [Glycine max (L.) Merr.] from crop physiological maturity to 4 wk after physiological maturity at multiple sites spread across 14 states in the southern, northern, and mid-Atlantic United States. Greater proportions of seeds were retained by weeds in southern latitudes and shatter rate increased at northern latitudes. Amaranthus spp. seed shatter was low (0% to 2%), whereas shatter varied widely in common ragweed (Ambrosia artemisiifolia L.) (2% to 90%) over the weeks following soybean physiological maturity. Overall, the broadleaf species studied shattered less than 10% of their seeds by soybean harvest. Our results suggest that some of the broadleaf species with greater seed retention rates in the weeks following soybean physiological maturity may be good candidates for HWSC.

Highlights

  • Farmers have relied on chemical weed control in row-crop production for decades, but the ongoing success of chemical tactics has been hindered by the evolution of resistance to a broad range of herbicide chemistries in many weed species (Heap 2019)

  • Cumulative seed shatter was calculated for graphical analysis of each species as the percentage of seed shattered at soybean physiological maturity, and 2, 3, and 4 wk after physiological maturity by pooling across individual sampled plants at each time point within each state in 2016 and 2017

  • This result could be a function of temperature, weed species, and/or a cultural management strategy, such as planting date

Read more

Summary

Introduction

Farmers have relied on chemical weed control in row-crop production for decades, but the ongoing success of chemical tactics has been hindered by the evolution of resistance to a broad range of herbicide chemistries in many weed species (Heap 2019). We conducted studies to determine the proportion of weed seeds shattered versus retained relative to the date of soybean physiological maturity of 13 economically important broadleaf weeds across the United States.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.