Abstract

There is much to be gained from investigating sediment dynamics in the lower Mississippi system, the largest river in terms of discharge and sediment load in North America. Such work can improve conceptual knowledge concerning downstream changes at the lower end of large river systems and can be applied to manage sediment diversions for wetland restoration in south Louisiana. Suspended sediment dynamics in the lowermost Mississippi River system in Louisiana are characterized using three approaches: (1) temporal changes in discharge-suspended sediment relationships showing interannual variations and the effects of floods over short timescales; (2) empirical relationships between discharge and suspended sediment variables at various locations; and (3) downstream changes in discharge-suspended sediment relationships. Interpretation of this data set is enhanced with other secondary data regarding processes, morphology, and bed materials. Upstream, near Old River, LA, empirical relationships show nonlinearity, particularly in fine sediments, with decreased concentrations at highest discharges. During high discharge years, suspended sediment concentration peaks precede discharge crests by 40–85 days. The lead generally decreases with decreasing discharge maxima so that in low discharge years sediment peaks and discharge crests closely coincide in time. Downstream, near Belle Chasse, LA, fine bottom materials are resuspended and the timing of sediment peaks and discharge crests is coincident, regardless of flow magnitude. Conceptually, results suggest caution when generalizing about the relative timing of the sediment wave and flood wave and their downstream progression. These phenomena are influenced by local bed material and hydraulic conditions, and depend on the causative factors of sediment peaks. From an applied perspective, diversions should be managed differently depending upon where they are constructed along the river and upon the magnitude of the annual maximum flow. During high discharge years, when concerns for navigation and water supply are minimal, flow should be diverted on the rising limb upstream, near Old River, and during the discharge crest downstream near New Orleans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.