Abstract

Differential phase shift quantum key distribution systems have a high potential for achieving high speed key generation. However, its unconditional security proof is still missing, even though it has been proposed for many years. Here, we prove its security against collective attacks with a weak coherent light source in the noiseless case (i.e., no bit error). The only assumptions are that quantum theory is correct, the devices are perfect and trusted and the key size is infinite. Our proof works on threshold detectors. We compute the lower bound of the secret key generation rate using the information-theoretical security proof method. Our final result shows that the lower bound of the secret key generation rate per pulse is linearly proportional to the channel transmission probability if Bob's detection counts obey the binomial distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.