Abstract

It is a big challenge for resource-limited mobile devices (MDs) to execute various complex and energy-consumed mobile applications. Fortunately, as a novel computing paradigm, edge computing (MEC) can provide abundant computing resources to execute all or parts of the tasks of MDs and thereby can greatly reduce the energy of MD and improve the QoS of applications. However, offloading workflow tasks to the MEC servers are liable to external security threats (e.g., snooping, alteration). In this paper, we propose a security and energy efficient computation offloading (SEECO) strategy for service workflows in MEC environment, the goal of which is to optimize the energy consumption under the risk probability and deadline constraints. First, we build a security overhead model to measure the execution time of security services. Then, we formulate the computation offloading problem by incorporating the security, energy consumption and execution time of workflow application. Finally, based on the genetic algorithm (GA), the corresponding coding strategies of SEECO are devised by considering tasks execution order and location and security services selection. Extensive experiments with the variety of workflow parameters demonstrate that SEECO strategy can achieve the security and energy efficiency for the mobile applications. ’

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.