Abstract

We study security in partial repair in wireless caching networks where parts of the stored packets in the caching nodes are susceptible to be erased. Let us denote a caching node that has lost parts of its stored packets as a sick caching node and a caching node that has not lost any packet as a healthy caching node. In partial repair, a set of caching nodes (among sick and healthy caching nodes) broadcast information to other sick caching nodes to recover the erased packets. The broadcast information from a caching node is assumed to be received without any error by all other caching nodes. All the sick caching nodes then are able to recover their erased packets, while using the broadcast information and the nonerased packets in their storage as side information. In this setting, if an eavesdropper overhears the broadcast channels, it might obtain some information about the stored file. We thus study secure partial repair in the senses of information-theoretically strong and weak security. In both senses, we investigate the secrecy caching capacity, namely, the maximum amount of information which can be stored in the caching network such that there is no leakage of information during a partial repair process. We then deduce the strong and weak secrecy caching capacities, and also derive the sufficient finite field sizes for achieving the capacities. Finally, we propose optimal secure codes for exact partial repair, in which the recovered packets are exactly the same as erased packets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.