Abstract

Abstract Data integrity is a term used when referring to the accuracy and reliability of data. It ensures that data is not altered during operations, such as transfer, storage, or retrieval. Any changes to the data for example malicious intention, unpredicted hardware failure or human error would results in failure of data integrity. Cryptographic hash functions are generally used for the verification of data integrity. For many Internet of Things (IoT) applications, hardware implementations of cryptographic hash functions are needed to provide near real time data integrity checking. The IoT is a world where billions of objects can sense, share information and communicate over interconnected public or private Internet Protocol (IP) networks. This paper provides an implementation of a newly selected cryptographic hash algorithm called Secure Hash Algorithm – 3 (SHA-3) on Xilinx FPGAs (Spartan, Virtex, Kintex and Artix) and also provides the power analysis of the implemented design. An FPGA is the best leading platform of the modern era in terms of flexibility, reliability and re-configurability. In this implementation the core functionality of SHA-3 is implemented using LUT-6 primitives and then these primitives are instantiated for the complete implementation of SHA-3. The Xilinx Xpower tool is used for power analysis of the implemented design. This implementation can be used with IoT applications to provide near real time data integrity checks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.