Abstract

To solve the problem that the existing ciphertext domain image retrieval system is challenging to balance security, retrieval efficiency, and retrieval accuracy. This research suggests a searchable encryption and deep hashing-based secure image retrieval technique that extracts more expressive image features and constructs a secure, searchable encryption scheme. First, a deep learning framework based on residual network and transfer learning model is designed to extract more representative image deep features. Secondly, the central similarity is used to quantify and construct the deep hash sequence of features. The Paillier homomorphic encryption encrypts the deep hash sequence to build a high-security and low-complexity searchable index. Finally, according to the additive homomorphic property of Paillier homomorphic encryption, a similarity measurement method suitable for computing in the retrieval system’s security is ensured by the encrypted domain. The experimental results, which were obtained on Web Image Database from the National University of Singapore (NUS-WIDE), Microsoft Common Objects in Context (MS COCO), and ImageNet data sets, demonstrate the system’s robust security and precise retrieval, the proposed scheme can achieve efficient image retrieval without revealing user privacy. The retrieval accuracy is improved by at least 37% compared to traditional hashing schemes. At the same time, the retrieval time is saved by at least 9.7% compared to the latest deep hashing schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.