Abstract
BackgroundGastroesophageal reflux and Barrett's esophagus are significant risk factors for the development of esophageal adenocarcinoma. Group IIa secretory phospholipase A2 (sPLA2) catalyzes the production of various proinflammatory metabolites and plays a critical role in promoting reflux-induced inflammatory changes within the distal esophagus. We hypothesized that inhibition of sPLA2 in human Barrett's cells would attenuate adhesion molecule expression via decreased activation of nuclear factor kappa B (NF-κB) and decrease cell proliferation, possibly mitigating the invasive potential of Barrett's esophagus. Materials and methodsNormal human esophageal epithelial cells (HET1A) and Barrett's cells (CPB) were assayed for baseline sPLA2 expression. CPB cells were treated with a specific inhibitor of sPLA2 followed by tumor necrosis factor-α. Protein expression was evaluated using immunoblotting. Cell proliferation was assessed using an MTS cell proliferation assay kit. Statistical analysis was performed using the Student's t-test or analysis of variance, where appropriate. ResultsCPB cells demonstrated higher baseline sPLA2 expression than HET1A cells (P = 0.0005). Treatment with 30 μM sPLA2 inhibitor significantly attenuated intercellular adhesion molecule-1 (P = 0.004) and vascular cell adhesion molecule-1 (P < 0.0001) expression as well as decreased NF-κB activation (P = 0.002). sPLA2 inhibition decreased cell proliferation in a dose-dependent manner (P < 0.001 for 15, 20, and 30 μM doses). ConclusionssPLA2 inhibition in human Barrett's cells decreases cellular adhesive properties and NF-κB activation as well as decreases cell proliferation, signifying downregulation of the inflammatory response and possible attenuation of cellular malignant potential. These findings identify sPLA2 inhibition as a potential chemopreventive target for premalignant lesions of the esophagus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.