Abstract

BackgroundChagas disease is a debilitating often fatal disease resulting from infection by the protozoan parasite Trypanosoma cruzi. Chagas disease is endemic in 21 countries of the Americas, and it is an emerging disease in other countries as a result of migration. Given the chronic nature of the infection where intracellular parasites persist for years, the diagnosis of T. cruzi by direct detection is difficult, whereas serologic tests though sensitive may yield false-positive results. The development of new rapid test based on the identification of soluble parasitic antigens in serum would be a real innovation in the diagnosis of Chagas disease.MethodsTo identify new soluble biomarkers that may improve diagnostic tests, we investigated the proteins secreted by T. cruzi using mass spectrometric analyses of conditioned culture media devoid of serum collected during the emergence of trypomastigotes from infected Vero cells. In addition, we compared the secretomes of two T. cruzi strains from DTU Tc VI (VD and CL Brener).ResultsAnalysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins. Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, MASP, and DGF1). Ultimately we have established a list of 94 secreted proteins, common to both DTU Tc VI strains that do not belong to members of multigene families.ConclusionsThis study provides the first comparative analysis of the secretomes from two distinct T. cruzi strains of DTU TcVI. This led us to identify a subset of common secreted proteins that could potentially serve as serum markers for T. cruzi infection. Their potential could now be evaluated, with specific antibodies using sera collected from patients and residents from endemic regions.

Highlights

  • Trypanosoma cruzi is a protozoan parasite of the order Kinetoplastide and the aetiological agent of Chagas disease a vector-borne infection with a high prevalence in Central and South America

  • Analysis of the secretome collected during the emergence of trypomastigotes from Vero cells led to the identification of 591 T. cruzi proteins

  • Three hundred sixty three proteins are common to both strains and most belong to different multigenic super families (i.e. TcS, GP63, mucin-associated surface proteins (MASPs), and DGF1)

Read more

Summary

Introduction

Trypanosoma cruzi is a protozoan parasite of the order Kinetoplastide and the aetiological agent of Chagas disease a vector-borne infection with a high prevalence in Central and South America. T. cruzi reproduction is mostly clonal, with occasional events of genetic exchange leading to the emergence of hybrid genotypes [3]. These features led to a complex population structure, showing remarkable genetic diversity [4]. The remarkable genetic heterogeneity of T.cruzi could partially account for their wide range of biological features, ecoepidemiological traits, and the large spectrum of clinical manifestations of Chagas disease [6]. Humans can become infected via blood transfusion or organ transplantation [8], through the ingestion of tainted food and fluids [9], or via vertical transmission from mother-to-child during pregnancy or delivery [10][11]

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.