Abstract

Aquaporin-1 (AQP1) water channels are present in the apical and basolateral plasma membrane domains of bile duct epithelial cells, or cholangiocytes, and mediate the transport of water in these cells. We previously reported that secretin, a hormone known to stimulate ductal bile secretion, increases cholangiocyte osmotic water permeability and stimulates the redistribution of AQP1 from an intracellular vesicular pool to the cholangiocyte plasma membrane. Nevertheless, the target plasma membrane domain (i.e., basolateral or apical) for secretin-regulated trafficking of AQP1 in cholangiocytes is unknown, as is the functional significance of this process for the secretion of ductal bile. In this study, we used primarily an in vivo model (i.e., rats with cholangiocyte hyperplasia induced by bile duct ligation) to address these issues. AQP1 was quantitated by immunoblotting in apical and basolateral plasma membranes prepared from cholangiocytes isolated from rats 20 min after intravenous infusion of secretin. Secretin increased bile flow (78%, P < 0.01) as well as the amount of AQP1 in the apical cholangiocyte plasma membrane (127%, P < 0.05). In contrast, the amount of AQP1 in the basolateral cholangiocyte membrane and the specific activity of an apical cholangiocyte marker enzyme (i.e., gamma-glutamyltranspeptidase) were unaffected by secretin. Similar observations were made when freshly isolated cholangiocytes were directly exposed to secretin. Immunohistochemistry for AQP1 in liver sections from secretin-treated rats showed intensified staining at the apical region of cholangiocytes. Pretreatment of rats with colchicine (but not with its inactive analog beta-lumicolchicine) inhibited both the increases of AQP1 in the cholangiocyte plasma membrane (94%, P < 0.05) and the bile flow induced by secretin (54%, P < 0.05). Our results in vivo indicate that secretin induces the microtubule-dependent insertion of AQP1 exclusively into the secretory pole (i.e., apical membrane domain) of rat cholangiocytes, a process that likely accounts for the ability of secretin to stimulate ductal bile secretion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.