Abstract

This paper proposes second-order consensus protocols and gives a measure of the robustness of the protocols to the time-delays existing in the dynamics of agents with second-order dynamics. By employing a frequency domain method, it is proven that the information states achieve second-order consensus asymptotically for appropriate time-delay if the topology of the network is connected. Particularly, a nonconservative upper bound on the fixed time-delay that can be tolerated is found. The consensus protocols are distributed in the sense that each agent only needs information from its neighboring agents, which makes the proposed protocols scalable. It reduces the complexity of connections among agents significantly. Simulation results are provided to verify the effectiveness of the theoretical results for second-order consensus in networks in the presence of time-delays existing in the dynamics of agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.