Abstract

AbstractA second‐order boundary element technique was developed to simulate the 3D hydrodynamic interactions between multiple particles of arbitrary shape. This paper reports the results of an extensive validation procedure aimed at demonstrating the convergence characteristics of the technique, especially in cases where the particles are in close proximity. The quadratic elements are superior to the lower‐order elements in terms of accuracy, computer storage and CPU time required, thus resulting in a significant improvement in the overall computational efficiency. Superparametric discretization improves the accuracy over isoparametric discretization but lowers the convergence rate of the method. When the interparticle gap becomes very small (less than 1% of the particle radius), the numerical solution diverges owing to inaccurate determination of the element contributions in the gap region. An adaptive subdomain integration scheme was developed that dramatically improved the integration accuracy and provided convergent solutions for problems of very small gaps down to 0–01% of the particle diameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.