Abstract

High chromium (18%) white irons solidify with a substantially austenitic matrix supersaturated with chromium and carbon. The austenite is destabilized by a hightemperature heat treatment which precipitates chromium-rich secondary carbides. In the as-cast condition the eutectic M7Ca3 carbides are surrounded by a thin layer of martensite and in some instances an adjacent thicker layer of lath martensite. The initial secondary carbide precipitation occurs on sub-grain boundaries during cooling of the as-cast alloy. After a short time (0.25 h) at the destabilization temperature of 1273 K, cuboidal M23C6 precipitates within the austenite matrix with the cube-cube orientation relationship. After the normal period of 4 h at 1273 K, there is a mixture of M23C6 and M7C3 secondary carbides and the austenite is sufficiently depleted in chromium and carbon to transform substantially to martensite on cooling to room temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.