Abstract

This paper is devoted to developing first-order necessary, second-order necessary, and second-order sufficient optimality conditions for a multiobjective optimization problem whose order is induced by a finite product of second-order cones (here named as Q-multiobjective optimization problem). For an abstract-constrained Q-multiobjective optimization problem, we derive two basic necessary optimality theorems for weak efficient solutions and a second-order sufficient optimality theorem for efficient solutions. For Q-multiobjective optimization problem with explicit constraints, we demonstrate first-order and second-order necessary optimality conditions under Robinson constraint qualification as well as second-order sufficient optimality conditions under upper second-order regularity for the explicit constraints. As applications, we obtain optimality conditions for polyhedral conic, second-order conic, and semi-definite conic Q-multiobjective optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.