Abstract

ABSTRACT Nonlinear frequency generation at the nanoscale is a hot research topic which is gaining increasing attention in nanophotonics. The generation of harmonics in subwavelength volumes is historically associated with the enhancement of electric fields in the interface of plasmonic structures. Recently, new platforms based on high-index dielectric nanoparticles have emerged as promising alternatives to plasmonic structures for many applications. By exploiting optically induced electric and magnetic response via multipolar Mie resonances, dielectric nanoelements may lead to innovative opportunities in nanoscale nonlinear optics. Dielectric optical nanoantennas enlarge the volume of light–matter interaction with respect to their plasmonic counterpart, since the electromagnetic field can penetrate such materials, and therefore producing a high throughput of the generated harmonics. In this review, we first recap recent developments obtained in high refractive index structures, which mainly concern nonlinear second order effects. Moreover, we discuss configurations of dielectric nano-devices where reconfigurable nonlinear behavior is achieved. The main focus of this work concerns efficient Sum Frequency Generation in dielectric nano-platforms. The reported results may serve as a reference for the development of new nonlinear devices for nanophotonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.