Abstract
This paper is concerned with the issue of obtaining explicit fluctuation splitting schemes which achieve second-order accuracy in both space and time on an arbitrary unstructured triangular mesh. A theoretical analysis demonstrates that, for a linear reconstruction of the solution, mass lumping does not diminish the accuracy of the scheme provided that a Galerkin space discretization is employed. Thus, two explicit fluctuation splitting schemes are devised which are second-order accurate in both space and time, namely, the well known Lax–Wendroff scheme and a Lax–Wendroff-type scheme using a three-point-backward discretization of the time derivative. A thorough mesh-refinement study verifies the theoretical order of accuracy of the two schemes on meshes with increasing levels of nonuniformity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.