Abstract

We demonstrate a new, nonlinear optical effect of electric currents. First, a steady current is generated by applying a voltage on a doped GaAs crystal. We demonstrate that this current induces second-harmonic generation of a probe laser pulse. Second, we optically inject a transient current in an undoped GaAs crystal by using a pair of ultrafast laser pulses and demonstrate that it induces the same second-harmonic generation. In both cases, the induced second-order nonlinear susceptibility is proportional to the current density. This effect can be used for nondestructive, noninvasive, and ultrafast imaging of currents. These advantages are illustrated by the real-time observations of a coherent plasma oscillation and spatial resolution of current distribution in a device. This new effect also provides a mechanism for electrical control of the optical response of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.