Abstract
Zinc oxide ZnO is a n-type semiconductor having a wide direct band gap (3.37 eV) as well as a non-centrosymmetric crystal structure resulting from hexagonal wurtzite phase. Its wide transparency range along with its second order nonlinear optical properties make it a promising material for efficient second harmonic generation processes and nonlinear optical applications in general. In this review, we present an extensive analysis of second harmonic generation from ZnO films and nanostructures. The literature survey on ZnO films will include some significant features affecting second harmonic generation efficiency, as crystalline structure, film thickness, surface contributes, and doping. In a different section, the most prominent challenges in harmonic generation from ZnO nanostructures are discussed, including ZnO nanowires, nanorods, and nanocrystals, to name a few. Similarly, the most relevant works regarding third harmonic generation from ZnO films and nanostructures are separately addressed. Finally, the conclusion part summarizes the current standing of published values for the nonlinear optical coefficients and for ZnO films and nanostructures, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.