Abstract
We conducted a theoretical investigation of second harmonic generation and other nonlinear features that result from the magnetic Lorentz force, when a single aperture is cut on a thick, opaque palladium substrate. We studied the dependences of linear pump transmission and second harmonic generation near resonance conditions, and explored the different physical mechanisms and their dependences, for example, geometrical features. We found that it is possible to exploit field localization and surface plasmon generation to enhance second harmonic generation in the regime of extraordinary transmittance of the pump field. Both transmitted and backward second harmonic generation conversion efficiencies were investigated. The results reveal that it may be possible to access several potential new applications. In particular, we demonstrated that the exploitation of a combination of nonlinear effects and enhanced transmission makes possible a palladium-based device suitable for H2-leak-detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.