Abstract
Artificial intelligence tools are gaining more and more ground each year in bioinformatics. Learning algorithms can be taught for specific tasks by using the existing enormous biological databases, and the resulting models can be used for the high-quality classification of novel, un-categorized data in numerous areas, including biological sequence analysis. Here, we introduce SECLAF, a webserver that uses deep neural networks for hierarchical biological sequence classification. By applying SECLAF for residue-sequences, we have reported [Methods (2018), https://doi.org/10.1016/j.ymeth.2017.06.034] the most accurate multi-label protein classifier to date (UniProt-into 698 classes-AUC 99.99%; Gene Ontology-into 983 classes-AUC 99.45%). Our framework SECLAF can be applied for other sequence classification tasks, as we describe in the present contribution. The program SECLAF is implemented in Python, and is available for download, with example datasets at the website https://pitgroup.org/seclaf/. For Gene Ontology and UniProt based classifications a webserver is also available at the address above.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.